skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Llorente-Bousquets, Jorge"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Color vision is thought to play a key role in the evolution of animal coloration, while achromatic vision is rarely considered as a mechanism for species recognition. Here we test the hypothesis that brightness vision rather than color vision helpsAdelpha fessoniabutterflies identify potential mates while their co-mimetic wing coloration is indiscriminable to avian predators. We examine the trichromatic visual system ofA. fessoniaand characterize its photoreceptors using RNA-seq, eyeshine, epi-microspectrophotometry, and optophysiology. We model the discriminability of its wing color patches in relation to those of its co-mimic,A. basiloides, throughA. fessoniaand avian eyes. Visual modeling suggests that neitherA. fessonianor avian predators can readily distinguish the co-mimics’ coloration using chromatic or achromatic vision under natural conditions. These results suggest that mimetic colors are well-matched to visual systems to maintain mimicry, and that mate avoidance between these two look-alike species relies on other cues. 
    more » « less
  2. While surface microstructures of butterfly wings have been extensively studied for their structural coloration or optical properties within the visible spectrum, their properties in infrared wavelengths with potential ties to thermoregulation are relatively unknown. The midinfrared wavelengths of 7.5 to 14 µm are particularly important for radiative heat transfer in the ambient environment, because of the overlap with the atmospheric transmission window. For instance, a high midinfrared emissivity can facilitate surface cooling, whereas a low midinfrared emissivity can minimize heat loss to surroundings. Here we find that the midinfrared emissivity of butterfly wings from warmer climates such asArchaeoprepona demophoon(Oaxaca, Mexico) andHeliconius sara(Pichincha, Ecuador) is up to 2 times higher than that of butterfly wings from cooler climates such asCelastrina echo(Colorado) andLimenitis arthemis(Florida), using Fourier-transform infrared (FTIR) spectroscopy and infrared thermography. Our optical computations using a unit cell approach reproduce the spectroscopy data and explain how periodic microstructures play a critical role in the midinfrared. The emissivity spectrum governs the temperature of butterfly wings, and we demonstrate thatC. echowings heat up to 8 °C more thanA. demophoonwings under the same sunlight in the clear sky of Irvine, CA. Furthermore, our thermal computations show that butterfly wings in their respective habitats can maintain a moderate temperature range through a balance of solar absorption and infrared emission. These findings suggest that the surface microstructures of butterfly wings potentially contribute to thermoregulation and provide an insight into butterflies' survival. 
    more » « less